

			
	
	
		
		

			
			
			
								
								
					
													
							
	
					
			

								
								

																								
										Primary Menu										

	Who we are
	Our Story
		
			
	
				As a Global Technology Company, we're dedicated to the Success of our 250+ Satisfied Customers, with a team of 400+ Happy Professionals across 5 Countries!
	Explore Our Journey

	

	Offshore Partner
		
			
	
				We believe in building Strong, Collaborative Partnerships with our Clients, based on Trust, Transparency, and Shared Goals!
	Partner With Us!

	

	FAQ's
	Contact Us
	Connect with Us
		
			
	
				 LinkedIn
	 Instagram

	
				 Facebook
	 Youtube

	
				 Twitter
	 Clutch

	

	What we do
	Overview
		
			
	
				Digital Engineering, AI & ML, Quality Engineering Services and Enterprise Services
	View All Success Stories!

	

	Services
		
			
	
				AI & ML
	Quality Engineering Services
	Cloud Web Application
	GPT Powered Applications

	
				Cloud Computing
	Digital Engineering
	Enterprise Solutions

	
				User Experience Engineering
	Mobile Application
	DevOps Automation

	

	
			
	
				View All Services!

	Industries
		
			
	
				All Industries
	NPO & Government
	Transportation & Logistics
	Media & Entertainment

	
				Healthcare & Life Science
	Sports
	E-Commerce & Retail
	Hospitality & Food Technology

	
				E-Learning & Education
	Financial Services
	Manufacturing & Energy

	

	Technologies
		
			
	
				Transform your business with our innovative IT solutions, spanning AI, Cloud Computing, Digital Engineering, Quality Assurance, and Enterprise Services
	Explore Tech Solutions

	

	Platforms
		
			
	
				elsAi
	J1FFY

	
				S.H.I.E.L.D

	
				Scanflow

	

	Insights
	Blogs
	Whitepaper
	Tech Musings
	Video Logs
	YouTube

	Success Stories
	Careers
	Contact Us

																			
																										

				

				
					

	
	

	
	
		
		
		

		
		Generating PDF Summaries
 Using ChatGPT with
 Python
 in Angular

		
		Talk to our Experts!
	

	

		
		

	
		

			
				

					
						
						
							
								
									

																																																	

									
																																									November 14, 2023
																			

								

							

							
						
						In today’s data-driven world, extracting valuable insights from a multitude of PDF documents is a common challenge. Fortunately, with the power of Python and AI, you can automate the process of summarizing PDFs using ChatGPT. In this blog, we’ll walk you through the steps to achieve this task efficiently.

How can I use ChatGPT to create a summary of a PDF document?

Please make sure to install the following dependencies: Flask, azure-cognitiveservices-vision-computervision, PyMuPDF, long-chain, and openai version 0.28.1.

Step 1: Uploading PDFs via Flask

We begin by setting up a Python application using Flask to create an API for PDF upload. Users can conveniently send their PDF documents through this interface, making the process user-friendly.

from flask import Flask, request

app = Flask(__name__)@app.route(‘/upload_pdf’, methods = [‘POST’])

def main():

files = request.files[‘pdf’]

return convert_pdf_to_jpg(files,files.name)if __name__ == ‘__main__’:

app.run(debug = True)

A Flask app with a route ‘/upload_pdf’ for POST requests. It handles PDF uploads and starts to convert them to JPG images using the convert_pdf_to_jpg function.

Step 2: Converting PDF Pages to JPG

To work with the content of PDFs, we utilize the fitz library to convert each page of the PDF into a JPG image. This step ensures that the text within the PDF is in a format that can be processed further.

def convert_pdf_to_jpg(pdf_file,name_without_extension):

Open the PDF filepdf_document = fitz.open(pdf_file)# Create a directory to save the images

output_dir = “Extraction_images/”
if not os.path.exists(‘./Extraction_images’):

os.makedirs(‘./Extraction_images’)

Loop through the pages and convert to images

for page_num in range(pdf_document.page_count):

page = pdf_document.load_page(page_num)

image = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) # Adjust the resolution as needed

image.save(f”{output_dir}{name_without_extension}_{page_num + 1}.jpg”)

Close the PDF document

pdf_document.close()

return Extract_text_from_jpg(pdf_file)

The code converts a PDF into JPG images, creating an output directory for the images. It loops through the PDF pages, adjusts the resolution, and saves them as images. Finally, it calls combine_pdf(pdf_file).

Step 3: Optical Character Recognition (OCR)

With our PDF pages in image format, we employ Azure OCR Cognitive Services to extract text from each JPG file. This text is then compiled and organized into a single text file.

from azure.cognitiveservices.vision.computervision import ComputerVisionClient

from azure.cognitiveservices.vision.computervision.models import OperationStatusCodes

from azure.cognitiveservices.vision.computervision.models import VisualFeatureTypes

from msrest.authentication import CognitiveServicesCredentialsdef Azure_Client():

subscription_key = “”endpoint = “”return ComputerVisionClient(

endpoint, CognitiveServicesCredentials(subscription_key)

)def txt_to_file(file_path, string_to_write):

try:

print(file_path)

with open(file_path, “w”,encoding=“utf-8”) as file:

file.write(string_to_write)

print(“OCR Completed”)

except IOError:

print(“An error occurred while writing to the file.”)def ocr_single_file(computervision_client, pdf_path):file = open(pdf_path, “rb”)read_response = computervision_client.read_in_stream(

file,raw=True

)

file.close()

Get the operation location (URL with an ID at the end) from the response

read_operation_location = read_response.headers[“Operation-Location”]

Grab the ID from the URLoperation_id = read_operation_location.split(“/”)[-1]

Call the “GET” API and wait for it to retrieve the results

while True:

read_result = computervision_client.get_read_result(operation_id)

print(read_result)

if read_result.status not in [“notStarted”, “running”]:

break

time.sleep(6)
text = “”

Print the detected text, line by line

if read_result.status == OperationStatusCodes.succeeded:

for text_result in read_result.analyze_result.read_results:

for line in text_result.lines:

text += “\n” + line.text

text += “\n\n”

return text

def create_folder(pdf_path):

Extract the file name from the location string

file_name = os.path.basename(pdf_path)

output_dir = os.path.splitext(file_name)[0]

to create a output folder

output_dir = “Extraction_text/” + output_dir

if not os.path.exists(output_dir):

os.makedirs(output_dir,)

output_file = output_dir + “/” + “ocr.txt”

return output_file

def Extract_text_from_jpg(file):

file.save(‘./’ + file.filename)

folder_path = “./Extraction_images”

List all PDF files in the folder

jpg_files = glob.glob(os.path.join(folder_path, “*.jpg”))

jpg_files = natsorted(jpg_files)

for jpgfile in jpg_files:

pdf_path = jpgfile

computervision_client = Azure_Client()

txt_file = ocr_single_file(computervision_client, pdf_path)

file_name = create_folder(pdf_path=pdf_path)

print(“__________________”)

print(

“##”

)

txt_to_file(file_name, txt_file)

	Define Azure_Client function: This function sets up the Azure Cognitive Services client by providing the subscription key and endpoint.
	txt_to_file function: This function writes text to a file provided by file_path.

	ocr_single_file function: This function performs OCR on a single PDF file. It reads the PDF and retrieves the text content using Azure Cognitive Services. It waits for the operation to complete and returns the extracted text.
	create_folder function: This function creates an output folder based on the PDF file’s name to store the OCR results in a text file.

	Extract_text_from_jpg function: This function handles the PDF file upload and OCR conversion. It saves uploaded files, processes each image (jpg) in the PDF, and extracts text from them using Azure Cognitive Services. The extracted text is saved to a corresponding output folder as a text file.

Overall, the code processes PDF files, extracts text from images within them, and stores the extracted text in individual text files in output folders.

Step 4: Text Chunking with langchain

To make the text more manageable, we implement the langchain library and use its RecursiveCharacterTextSplitter feature. This allows us to divide the text into smaller more digestible chunks. The chunk_size and separator parameters help customize the splitting process to suit your needs.

from langchain.text_splitter import RecursiveCharacterTextSplitter

import tiktoken

def text_spliting():

folder_path = “./”

Get the text file

latest_text_path = glob.glob(os.path.join(folder_path, “*.txt”))with open(latest_text_path[0],“rb”) as t:

prompt_text = t.read()prompt_text = prompt_text.replace(‘\\r’,”)chunk_size = 10000

separators = [‘\\n\\n\\n’]

text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(

chunk_size=chunk_size,

chunk_overlap=0,

separators=separators

)docs = text_splitter.split_text(prompt_text)print(len(docs),“after chunk”)with open(‘./chunk_output.txt’,‘a’,encoding=“utf-8”) as f:for i,k in enumerate(docs):f.write(k)

f.write(“\n\n\n\n\n”)

f.write(“Next chunk”)
return {“chunk_doc”:“chunk_output.txt”}

The code utilizes the Langchain library for text splitting. It reads a text file, divides it into smaller chunks based on specified separators, and then saves the resulting chunks in a separate file. The code returns information about the processed chunks in a dictionary.

Step 5: Summarization with ChatGPT

As ChatGPT processes each text chunk, it generates corresponding summaries. These summaries are collected and assembled into a final text file. This consolidated document provides a concise yet comprehensive overview of the original PDF content.

import openai

from dotenv import load_dotenv, find_dotenv

_ = load_dotenv(find_dotenv()) # read local .env fileopenai.api_key = os.getenv(‘OPENAI_API_KEY’)def get_completion(prompt, model=“gpt-3.5-turbo”):

response = openai.ChatCompletion.create(

model=model,

messages=messages,

temperature=0, # this is the degree of randomness of the model’s output

)

return response.choices[0].message[“content”]def summarize_prompt():

res = text_spliting()

summarize_file = open(‘./summarize_output.txt’,‘a’,encoding=“utf-8”)

for i,text in enumerate(res[‘chunk_doc’]):prompt = f”””

your task is to generate a short summary of this domain “Example”

Summarize the paragraph below, delimited by triple backticksSummarize the review below, delimited by triple

backticks. Produce results that encompass

both concise summaries and bullet-pointed insights

summary: “`{text}“` “””summary = get_completion(prompt=prompt,model = “gpt-3.5-turbo”)summarize_file.write(summary)summarize_file.write(“\n\n\n”)

The code uses the OpenAI API to generate summaries for text chunks. It loads the OpenAI API key from a local .env file, defines a function get_completion to retrieve text completions, and another function summarize_prompt to split text, generate summaries for each chunk, and write the summaries to an output file. The code is designed for summarizing text data related to the “example” domain.

Step 6: Delivering the Summarized Text

The final text file, containing all the summarized information, is ready to be delivered to the client. This step ensures that the extracted insights are readily accessible and easy to understand.

By following these steps, you can streamline the process of extracting valuable information from PDF documents using Python(OpenAI) and ChatGPT. This automated approach not only saves time but also ensures accuracy and consistency in your summarization tasks.

– – –

Are you ready to supercharge your PDF summarization process with the power of AI and Python? Try out these steps and transform the way you handle PDF documents. It’s a game-changer for researchers, professionals, and anyone dealing with large volumes of textual data.

Conclusion:

With Python, Flask, Azure OCR, ChatGPT, and thoughtful libraries like langchain, you can transform PDFs into concise, actionable insights. By automating the summarization process, you save time and enhance your document handling efficiency. Embrace the power of AI and take your PDF summarization to the next level.

Thank you for reading our blog! We hope you found it helpful. We’d love to hear your feedback. Please feel free to share your thoughts and suggestions on how we can improve or any other topics you’d like us to cover in the future. Your input is valuable to us.

					

					chatgptgenerativegenerative ailangchainllmsocrpdfPDF Summariespython

	
	
	
	
	
	
	

								
							
						
				optisolnew1 / About Author

				

				More posts by optisolnew1

			

		

	
					
					
					
				

			

			
		

	

		

		

												

	
		
		
			

		
	

	
		
		
			

		
	

	
		
		
			

		
	

	
		
		
			

		
	

	
		
		
			

		
	

	
		
		
			

		
	

Company
	About Us
	Offshore Development Center
	FAQ
	Careers
	Contact Us

Services
	Web Application
	Mobile Application
	AI & ML
	Enterprise Services
	Cloud Computing
	DevOps & Automation
	Quality Engineering Services

Connect with us
	 LinkedIn
	 Facebook
	 Twitter
	 Instagram
	 Youtube
	 Clutch

Global Offices:-

	
		
			 USA

	OptiSol US Inc
2108 N Street Suite 8238
Sacramento, CA 95816

	+1-415-233-4737
	+1 408 459 5837

		

	

	
		
			 UK

	Kemp House 160 City Road London, UK EC1V 2NX

	+44 1420 300014

		

	

	
		
			 Australia

	Level 28,161 Castlereagh Street Sydney NSW 2000

	+61 0401 590 468

		

	

	
		
			 UAE

	2nd Floor, Off. # 205
Al Reem Office Building
Fire Station Road
Muwaileh, Sharjah

	+971-50-791-3812

		

	

India Development Centres:-

	
		
			 India - Chennai

	Baid Hi Tech Park, 4thFloor, Thiruvanmiyur, Chennai - 600041

	+91-44-24512206

		

	

	
		
			 India - Madurai

	29, JK Tecton Grandis, 1st & 2nd Floor, Kamala 2nd street, Chinna Chokkikulam, Madurai-625002.

	+91-452-2902772

		

	

	
		
			 India - Coimbatore

	No 204, 2nd floor, PSG Step Centre of Excellence E8 Block, PSG iTech Campus, Neelambur, Coimbatore – 641062.

	+91-99407 75556

		

	

	
		
			Copyright 2024 © OptiSol Business Solutions Privacy policy | Disclaimer

		

	

						
						
			

		Connect With Us!

	

			
			

	
